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Axial next-nearest-neighbor Ising-model roughening transitions
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Low-temperature expansions are presented for the surface tension and second moment of the density
gradient in the three-dimensional axial next-nearest-neighbor Ising model. Padé approximants for the
second moment of the density gradient show a definite line of singularities in the space of coupling pa-
rameters. The surface tension is shown to be positive along this line. We conclude that our low-
temperature expansion is internally consistent to seventh order, that the singularity structure we found is
an exact property of the system, and that it is the roughening transition.

PACS number(s): 05.50.+q, 68.10.Cr

I. INTRODUCTION

The roughening transition is a type of two-dimensional
thermodynamical singular behavior in the Kosterlitz-
Thouless-universality class which occurs in many three-
dimensional systems which have an interface. In
mathematical terms this is a continuous transition
characterized by a correlation length £ which behaves as

b(T—TR V) /(Ty)

E=e ;

For T <Tg. This contrasts the case of a second-order
phase transition where £=|T—T,|”". Another distinct
feature of the roughening transition is the persistence of a
divergent correlation length for 7> T,. Such behavior
can be observed experimentally, for example, in a
separated two-fluid solution through measurements of in-
terfacial reflexivity.

In the context of the three-dimensional Ising model,
the condition needed for a roughening transition to occur
is the presence of an interface separating bulk regions of
plus and minus spins at low temperature. As the temper-
ature is increased the long-wavelength modes along the
interface steadily become the dominant contribution to
the surface free energy. This in turn implies that the
spins along the planes next to the interface feel a uniform
effect over the entire two-dimensional region. Further-
more the couplings that are perpendicular to the inter-
face are small at low temperature and vanish at absolute
zero as a simple spin-flip calculation can show. This im-
plies that the effective perpendicular mean field is small.
As such a coherent disordering of the bulk spins near the
interface occurs and manifests observably as a wandering
of the interface.

It was Weeks, Gilmer, and Leamy [1] who first ob-
tained the roughening critical temperature in the three-
dimensional Ising model using low-temperature expan-
sion and Padé approximant methods. Recently, Kahng,
Berera, and Dawson [2] and Berera and Kahng [3] have
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found the same transition in the Widom model [4].
Prompted by these results, we will explore the same be-
havior in the three-dimensional axial next-nearest-
neighbor Ising (ANNNI) model. In this paper we will
obtain, for the interface between two ferromagnetic
phases of opposite spin of the ANNNI model, the low-
temperature expansion to seventh order for the second
moment of the density gradient and the surface tension.
We will then compute the roughening transition line us-
ing d log Padé approximants for the second moment of
the density gradient.

Before proceeding let us briefly review the ANNNI
model. This lattice model has had a long history of use in
the study of alloys, magnetic order, and various proper-
ties of real material (for a review of the ANNNI model
see Ref. [4]). In years to come it may be replaced to a
large extent by the Widom model [5], which has the at-
tractive feature of isotropic, in addition to competing, mi-
croscopic interactions. However, at present much under-
standing about magnetic and alloy systems as well as ex-
tensive theoretical analysis of competing interactions has
been studied in the context of the ANNNI model. Thus
rigorous results such as low-temperature analysis about
this model will remain useful for sometime both for
theoretical and practical purposes.

In this respect there is another use for the work to be
presented here. Up to now most applications using low-
temperature expansions of the ANNNI model have relied
on idealized bulk quantities. However, in many practical
cases, real materials have large domains of bulk phase
separated by interfaces. For these cases it would be
beneficial to have precise knowledge about the interfacial
properties and our calculations here serve this dual pur-
pose of providing nontrivial high-order expansions of
relevant interfacial quantities.

II. CALCULATION AND RESULTS

To proceed with the calculation, the Hamiltonian for
the ANNNI model which we will use is
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where the index i runs over all sites on the lattice, {e™}
are a set of four unit vectors along the axis in the xy
plane, {e?} are a et of two unit vectors along the z direc-
tion, and {e*} are a set of two vectors of length 2 along
the z direction. The calculations presented in this paper
will be for a=1, for which the phase diagram obtained
from Ref. [4] is shown in Fig. 1.

The low-temperature expansions that we have per-
formed are defined in the two-dimensional parameter
space of J, and J,, restricted to the region of the bulk
ferromagnetic phase. To facilitate the calculations, we
define the parameter of smallness as

y=e (2a)
In addition, we define another auxiliary parameter,

x=e 2| (2b)
where

Jo

. Jo 3

Jo=T%T (3a)
and

=22 (3b)

.]2 - kT .

Note that the parameter x is not necessarily meant to be
small but is introduced only as a notational convenience.
Within this two-dimensional parameter space we will be
looking for singular behavior along a one-dimensional
slice. Our procedure will be to fix x and examine singular
behavior along the y direction using Padé approximants.

In order to calculate the roughening line, we examine
the low-temperature expansion of the second moment of
the density gradient, dp/dz, defined on a discrete lattice
as
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FIG. 1. Phase diagram obtained from Ref. [4] for the

ANNNI model at a=1. A sketch of the roughening line is
denoted by 7.
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Observe that this quantity gives a measure of the square
of the interfacial width. At low temperatures it will be
finite, but at the roughening critical point it is expected to
diverge with dominant singularity,

Yy—yr) 7, (5)

where VR, is y as defined in Eq. (2a), evaluated at the
roughening critical temperature, T , and Oy is the

roughening critical exponent.

To confirm the validity of the roughening line it is also
necessary to establish the positivity of the surface tension
along the line. To clarify this point, let us take note that
the roughening line we will obtain is based on a low-order
series expansion and not the complete partition function.
One must therefore be conservative about extracting in-
formation on singularity structure from such an ap-
proach especially when qualitative familiarity is lacking
as is the case for the relatively unexplored roughening
transition. As a reasonable check one can establish inter-
nal consistency within the order of expansion of the low-
temperature series. To do this it is simplest to compute
the surface tension since this quantity has readily
identifiable and familiar qualitative features. Given that
the surface tension computed to the same order is found
to be positive, one can assume with good confidence that
the singularity found from the series (A1) is associated
with true physical attributes of the system and is not an
artifact of a low-order series.

Turning to the results, our low-temperature expansions
are to seventh order in y for (z2) and surface tension 3
and are given in Appendix Egs. (A1) and (A2), respective-
ly. Observe that in the limit J,=0.0, or equivalently
x =1 (A1) agrees with the results in Ref. [1] and (A2) is
the series for the surface tension of the three-dimensional
Ising model as given in Ref. [6]. Both series in the Ap-
pendix have general applicability in the low-temperature
ferromagnetic regime, although in the present work, we
will study them only in the context of the roughening
transition.

To compute the coefficients, a modified Martin type al-
gorithm [2,3,7] was used to obtain all connected clusters
and clusters with only one disconnected monomer. The
remaining clusters were computed by hand. Our algo-
rithm can incorporate summing over any general set of
local interactions such as nearest and next-nearest cou-
plings in the case of the ANNNI model and this plus di-
agonal couplings for the Widom model [2,3]. As such it
is more elaborate than the original Martin algorithm for
the nearest-neighbor Ising model. The extension to even
higher orders in the low-temperature expansion is mainly
hindered by the difficulty of counting the terms done by
hand.

The numerical results of our low-temperature analysis
are summarized in Table I. The first two columns give
the coordinates of the roughening line that we found in
terms of the parameters x and y. This was obtained by a
Padé analysis [1] of the logarithmic derivative of the
series (A1) (i.e., d log Padé analysis). Columns 3 and 4
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TABLE I. Numerical results based on the low-temperature
expansion series in the Appendix. Columns 1-5 were obtained
by Padé analysis of the logarithmic derivative of series (Al).
Column 6 was obtained by direct evaluation of series (A2).

XR YR Jir Jar Oz DY
0.698 0.214 0.386 0.09 0.876 0.967
0.787 0.214 0.386 0.06 0.906 0.851
0.887 0.214 0.385 0.03 0.947 0.734
1.000 0.214 0.385 0.00 0.997 0.619
1.128 0.214 0.386 —0.03 1.046 0.508
1.271 0.212 0.388 —0.06 1.074 0.407
1.433 0.205 0.396 —0.09 1.050 0.319
1.616 0.194 0.410 —0.12 0.947 0.249
1.822 0.178 0.431 —0.15 0.758 0.194
2.054 0.158 0.461 —0.18 0.511 0.154
2.316 0.133 0.504 —0.21 0.250 0.138
2.611 0.092 0.596 —0.24 0.038 0.218*
2.945 0.312 0.291 —0.27 —1.720 —0.1722

Series questionable; see text.

give the same line in terms of the parameters j, and j,.
Column 5 gives the value of the exponent ©, as defined

in Eq. (5). It was also obtained from the d log Padé
analysis of (A1). Finally, in column 6, the surface tension
along the roughening line 3 is given. Here 3 is

;
Sr=2jor T4jr — D a,(xg)yg , (6)
n=2

where a,(xz) is obtained from the coefficient of y”" in
(A2) evaluated at x =xy. As our first observation, note
from Table I that 2, is positive along the roughening
line. In connection with our earlier discussion, this estab-
lishes the consistency of our low-temperature expansions.
Focusing specifically on © R, in Table I, both the mag-

nitude and variation reflect shortcomings of the low-
order series and the d log Padé approximant method used
to study the series. The roughening exponent is known
exactly for the body-centered solid-on-solid model to be
Or =1 [8], and is the expected result in our case along

exact

almost the entire roughening line except near the mul-
ticritical point. Near this point the theory is generally
not well understood and so neither is the behavior of
(S} R, Excluding this region, the variation of the exponent

can be understood in more precise terms by consideration
of the crossover effects from the column modulated
phases. For this note first that in the Ising limit the mi-
croscopic surface tension dominates, thus leading to the
formation of the rough phase, which in particular implies
a long correlation length. Next recall that in the column
modulated phases the bending energy dominates the mi-
croscopic surface tension. Due to these opposing effects,
as the magnitude of J, increases, the bending energy be-
gins to compete with the microscopic surface tension, sig-
nifying the crossover effect referred to above. This in
turn leads to shorter-ranged correlations or equivalently
a decrease in GRX. Furthermore, the effects are much

more pronounced in this system due to the presence of
the Lifshitz point (L in Fig. 1), where the paramagnetic,
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ferromagnetic, and column modulated phases meet. One
should expect that with a higher-order low-temperature
expansion there would be less crossover behavior and so
(S R, should be more constant along the roughening line.

Furthermore, this along with more sophisticated methods
for series analysis, should give an exponent that is closer
to its expected value of 1.

Returning to Table I, observe that the last two rows of
data show irregular behavior for which we can offer two
mutually contributing causes. First, these points are
close to phase boundaries which border other bulk phases
and our series is expanded solely with reference to the
bulk ferromagnetic phase. As such, crossover effects
from other phases are influencing the validity of the ex-
pansion. In this context we also mention that the
Lifshitz point, L in Fig. 1, may be having the greatest
influence of all. The second reason for the unusual data
is that the next-nearest-neighbor interaction is quite large
here so that the auxiliary parameter x is large. As such,
even though y is still small, its coefficient, which is a func-
tion of x, is now large. For example, in the second to last
row the ratio,

aj(x)yj ’

of the i =7 to the j =6 term for the series to =, Eq. (A2),
is

Fre(x =2.611,p =0.092)=—0.45 ,

whereas for the last row,

r6(x =2.945,5=0.312)=—1.99 .

This indicates that the smallness of successive terms is
becoming questionable and that the series is at the limits
of its validity.

In Fig. 1, line 7 is a sketch of the roughening line that
was given in Table I. Its starting point at the zero of the
abscissa is the Ising limit. As the next-nearest-neighbor
coupling increases, the line slowly slopes downward. In
terms of physical temperature, line r reads to say TRX de-

creases as the magnitude of the next-nearest-neighbor an-
tiferromagnetic coupling increases but that the effect is
gradual. Both these features can be qualitatively under-
stood. The decrease in Ty for increasing next-nearest-

neighbor antiferromagnetic coupling can be understood
by consideration of the low-temperature expansion. One
can easily see that the spins in the first two layers on ei-
ther side of the interface are energetically unaffected by
the second-neighbor coupling. In the third and further
layers the antiferromagnetic coupling energetically favors
spin flips thus weighing the balance towards a decrease in
TRX' Naturally, such an argument applies to the bulk

transition also, but since the roughening transition tem-
perature is so much lower than the bulk critical tempera-
ture the argument is more sound. As for the slowness of
the decrease in TRX’ this is accounted for by the small

connectivity of two with the second neighbors. In con-
trast, for the Widom model which has twelve diagonal



2320

and six second-neighbor couplings, the influence of these
higher neighbor interactions on T is much greater [2].

III. CONCLUSION

To summarize, this paper has presented the low-
temperature series for the second moment of dp/dz and
the surface tension X for an interface between two bulk
ferromagnetic phases in the ANNNI model. We have
obtained the roughening line and shown consistency of
our results through establishing positive surface tension
at TRX. The low-temperature series that we have present-

ed are of general use for studies in real material. There
are also several directions of further numerical investiga-
tion within the context of the roughening transition stud-
ied here. For one thing, our d log Padé analysis should
mainly be trusted to give only a yes or no determination
of the roughening singularity. To obtain better numeri-
cal accuracy would require further analysis by more so-
phisticated means. This would not merely be a numerical
exercise but has importance for the calculation of the sur-
face critical amplitude and exponent [3,6], where the pre-
cision in TRX is of the upmost importance. Another ave-

nue of exploration relates to the study of L. What is
needed here is an appropriate approximant that extends
the validity of our series into the region near L much as
the d log approximant did near the roughening transi-
tion.

Before concluding let us reflect on a few related
thoughts. Ever since the work of Weeks, Gilmer, and
Leamy [1], the presence of the roughening transition at
the interface between bulk phases and its accessibility by
low-temperature methods has been well accepted. Our
work here and in Ref. [2,3] verify their findings and its in-
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terpretation as related to two-dimensional critical behav-
ior. In terms of the latter point, our work serves as a
check that higher neighbor interactions do not eliminate
the singularity structure so found, though they do alter
the value of the roughening critical exponent © R, This

is congruous to beliefs, although rigorously unproven but
nevertheless well tested, about universality in critical
phenomenon.

Placed with this confidence, let us extend our thoughts
one further to the examination of similar two-
dimensional singular behavior in bulk layered phases. As
the first impediment, the low-temperature expansions
called for there are nontrivial when it is noted that our
own calculation involving the ferromagnetic phase re-
quired several long computer programs and elaborate
hand counting. On the other hand, the layered case is
more intriguing and most likely has concealed a much
richer singularity structure. The mere fact that this may
be accessible by the low-temperature approach prompts
attention since it gives us a rigorous handle on the parti-
tion function. Due to the recent surge to model surface
critical phenomenon, guidance from rigorous results such
as these already justifies the benefit of the low-
temperature expansion approach.
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APPENDIX

The low-temperature series for the second moment of the density gradient as defined in Eq. (4) is

(z2)=[2]p2+[14—8x [y +[401y*+[190+12x —58x 2]y +[812—92x + 106x 2]y *+[3604 + 172x —50x > —456x°1y” .

The low-temperature series for the surface tension X is

kT

+(22 —10x +21x2)y 4+ [196+24x —6x2—64x>]y7} .

(A1)

~2—~=2j0+4j2—{[2]y2+[6—4x > +[10]y*+[27+2x —13x2]y°
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